Part Number Hot Search : 
80C411 24026 STRAIGHT AN5320 68HC1 LT1078I 60152 J100A
Product Description
Full Text Search
 

To Download V23990-P719-G-PM Datasheet File

  If you can't view the Datasheet, Please click here to try to view without PDF Reader .  
 
 


  Datasheet File OCR Text:
  v23990-p719-*-pm flow 90con 1 1600v/75a 3~ phase input rectifier with or withot brc *optional half controlled compatible with flow 90pack 1 support designs with 90 mounting angle between heatsink and pcb clip-in pcb mounting motor drives servo drives V23990-P719-G-PM v23990-p719-h-pm w/o brake tj=25c, unless otherwise specified parameter symbol value unit repetitive peak reverse voltage v rrm 1600 v t h =80c 66 t c = 80c 90 t h = 80c 72 t c = 80c 11 0 maximum junction temperature t j max 1 5 0 c brake igbt t h =80c 35 t c = 80c 45 t h = 80c 75 t c = 80c 11 4 t sc t j 1 25c 1 0 s v cc v ge =15v 90 0 v 150 v a v c w a collector-emitter break down voltage t p limited by t j max p u lsed collector current gate-emitter peak voltage maximum junction temperature short circuit ratings dc collector current power dissipation per igbt v ge t j =t j max t j max p tot v ce i cpuls t j =t j max i c 4050 t j =45c t j =t j max features flow 90 housing target applications schematic t p =10ms 90 0 a types i 2 t-value maximum ratings i fav a 2 s i fsm condition dc current a w input rectifier diode forward current per diode surge forward current i 2 t p tot power dissipation per diode 12 00 105 20 copyright vincotech 1 revision: 3
v23990-p719-*-pm tj=25c, unless otherwise specified parameter symbol value unit maximum ratings condition brake inverse diode t h =80c 7, 5 t c =80c 7, 5 t h =80c 21 t c = 80c 32 brake fwd t h =80c 20 t c = 80c 25 t h = 80c 37 t c = 80c 56 thermal properties insulation properties v is t=2s dc voltage 4000 v min 12,7 mm min 12,7 mm 1200 maximum junction temperature t j max v rrm dc forward current p tot brake inverse diode t j =t j max p e ak repetitive reverse voltage repetitive peak forward current i frm a a t j =t j max t p limited by t j max w a w v c v a v r rm i f power dissipation per diode p tot t j =t j max t j =t j max d c forward current i f repetitive peak forward current i frm t p limited by t j max pe ak repetitive reverse voltage c maximum junction temperature t j max 15 0 c storage temperature t stg -40+125 c 6 c learance insulation voltage creepage distance t op operation temperature under switching condition - 40+(tjmax - 25) 1200 30 150 copyright vincotech 2 revision: 3
v23990-p719-*-pm parameter sy mbol unit v ge [v] or v gs [v] v r [v] or v ce [v] or v ds [v] i c [a] or i f [a] or i d [a] t j min typ max tj=25c 0,8 1,19 1,7 tj=125c 1,16 tj=25c 0,91 tj=125c 0,78 tj=25c 0,004 tj=125c 0,005 tj=25c 0,1 tj=125c thermal resistance chip to heatsink per chip r thjh 0,97 tj=25c 5 5,8 6,5 tj=125c tj=25c 1,3 1,80 2,25 tj=125c 2,02 tj=25c 0,25 tj=125c tj=25c 650 tj=125c 6 tj=25c 47 tj=125c 48 tj=25c 19 tj=125c 25 tj=25c 457 tj=125c 544 tj=25c 122 tj=125c 187 tj=25c 2,99 tj=125c 3,60 tj=25c 2,68 tj=125c 4,11 thermal resistance chip to heatsink per chip r thjh 0,93 tj=25c 1 1,60 2,2 tj=125c 1,57 thermal resistance chip to heatsink per chip r thjh 3,3 k/w tj=25c 1 1,75 2,3 tj=125c 1,73 tj=25c 250 tj=125c tj=25c 21 tj=125c 24 tj=25c 356 tj=125c 522 tj=25c 2,83 tj=125c 4,56 di(rec)max tj=25c 280 /dt tj=125c 137 tj=25c 2,83 tj=125c 4,56 thermal resistance chip to heatsink per chip r thjh 1,88 v v mws c v pf v a ns a / s a k/w 25 tj=25c tj=25c 205 115 0,0015 35 35 gate-emitter leakage current i ces v ge(th) v ce(sat) collector-emitter saturation voltage collector-emitter cut-off incl diode gate emitter threshold voltage r gint turn-off energy loss per pulse q gate brake inverse diode gate charge in p ut capacitance rise time turn-off delay time t d(off) reverse transfer capacitance e off turn-on energy loss per pulse turn-on delay time t f fall time t d(on) t r peak rate of fall of recovery current peak reverse recovery current reverse recovered charge diode forward voltage v f c oss e on output capacitance c rss c ies integrated gate resistor k/w nc brake igbt va l ue conditions characteristic values forward voltage th reshold voltage (for power loss calc. only) slope resistance (for power loss calc. only) v f v to r t input rectifier diode 76 76 k / w v v ma rev erse current i r reverse recovery energy v f i r t rr q rr e rec reverse recovery time i rrm thermal grease thickness 50um = 0,61 w/mk i ges thermal grease thickness 50um = 0,61 w/mk rgo ff=16 rgon=32 vce=vge 15 0 0 76 thermal grease thickness 50um = 0,61 w/mk 15 0 0 f= 1mhz 15 20 mws 0 ma na n s 15 diode forward voltage reverse leakage current brake fwd thermal grease th i ckness 50um = 0,61 w/mk rgo n=32 rgon=32 15 300 25 15 3 12 00 300 600 25 132 2530 copyright vincotech 3 revision: 3
v23990-p719-*-pm figure 1 brake igbt figure 2 brake igbt typical output characteristics typi cal output characteristics i c = f(v ce ) i c = f(v ce ) at a t t p = 2 5 0 s t p = 25 0 s t j = 25 c t j = 12 5 c v ge from 7 v to 17 v in steps of 1 v v ge from 7 v to 17 v in steps of 1 v figure 3 bra ke igbt figure 4 brake fwd typical transfer characteristics ty pi cal diode forward current as i c = f(v ge ) a function of forward voltage i f = f(v f ) at a t t p = 2 5 0 s t p = 25 0 s v ce = 10 v brake 0 20 40 60 80 0 1 2 3 4 5 v ce (v) i c (a) 0 5 10 15 20 25 30 0 2 4 6 8 10 v ge (v) i c (a) t j = 25c t j = t jmax -25c 0 5 10 15 20 25 30 0 0,5 1 1,5 2 2,5 3 3,5 v f (v) i f (a) t j = 25c t j = t jmax -25c 0 20 40 60 80 0 1 2 3 4 5 v ce (v) i c (a) copyright vincotech 4 revision: 3
v23990-p719-*-pm figure 5 brake igbt figure 6 brake igbt typical switching energy losses typi cal switching energy losses as a function of collector current as a function of gate resistor e = f(i c ) e = f(r g ) wi th an inductive load at with an inductive load at t j = 2 5 /125 c t j = 25 /125 c v ce = 60 0 v v ce = 60 0 v v ge = 15 v v ge = 15 v r gon = 16 i c = 35 a r goff = 8 figur e 7 br a ke igbt figure 8 brake igbt typical reverse recovery energy loss typi cal reverse recovery energy loss as a function of collector current as a function of gate resistor e rec = f(i c ) e rec = f(r g ) wi th an inductive load at with an inductive load at t j = 2 5 /125 c t j = 25 /125 c v ce = 6 0 0 v v ce = 60 0 v v ge = 15 v v ge = 15 v r gon = 16 i c = 35 a brake t j = t jmax - 25c e rec t j = 25c e rec 0 0,5 1 1,5 2 2,5 0 10 20 30 40 50 60 70 i c (a) e (mws) t j = t jmax -25c e rec t j = 25c e rec 0 0, 5 1 1,5 2 2,5 0 10 20 30 40 50 60 70 r g ( w ww w ) e (mws) t j = t jmax -25c e off e on t j = 25c e on e off 0 2 4 6 8 1 0 0 1 0 20 30 40 50 60 70 i c (a) e (mws) t j = t jmax -25c e off e on e on t j = 25c e off 0 1 2 3 4 5 6 7 0 1 0 20 30 40 50 60 70 r g ( w ww w ) e (mws) 25 / 125 25 / 125 25 / 125 25 / 125 copyright vincotech 5 r e v ision: 3
v23990-p719-*-pm figure 9 brake igbt figure 10 brake igbt typical switching times as a typi cal switching times as a function of collector current function of gate resistor t = f(i c ) t = f(r g ) wi th an inductive load at with an inductive load at t j = 1 2 5 c t j = 12 5 c v ce = 60 0 v v ce = 60 0 v v ge = 15 v v ge = 15 v r gon = 16 i c = 35 a r goff = 8 figur e 11 br a ke igbt figure 12 brake fwd igbt transient thermal impedance fwd transient thermal impedance as a function of pulse width as a function of pulse width z thjh = f(t p ) z thjh = f(t p ) at a t d = tp / t d = tp / t r thjh = 0 , 93 k/w r thjh = 1, 88 k/w igbt thermal model values fwd thermal model values r (c/w) tau (s) r (c/w) tau (s) 0,03 6,2e+00 0,04 9,4e+00 0,11 9,8e-01 0,16 9,2e-01 0,44 1,4e-01 0,72 1,3e-01 0,23 4,2e-02 0,47 3,1e-02 0,06 5,5e-03 0,32 6,1e-03 0,06 3,5e-04 0,17 5,7e-04 brake thermal grease th e rmal grease t doff t f t don t r 0,001 0 , 01 0,1 1 0 10 20 30 40 50 60 70 i c (a) t ( m s) t doff t f t don t r 0,001 0 , 01 0,1 1 10 0 10 20 30 40 50 60 70 r g ( w ww w ) t ( m s) t p (s) z thjh (k/w) 10 1 10 0 10 -1 10 -2 10 -4 10 -3 10 -2 10 -1 10 0 10 1 10 10 -5 d = 0,5 0,2 0,1 0,05 0,02 0,01 0,005 0.000 t p (s) z thjh (k/w) 10 1 10 0 10 -1 10 -2 10 -4 10 -3 10 -2 10 -1 10 0 10 1 10 10 -5 d = 0,5 0,2 0,1 0,05 0,02 0,01 0,005 0.000 copyright vincotech 6 r e vision: 3
v23990-p719-*-pm figure 13 brake igbt figure 14 brake igbt power dissipation as a coll ector current as a function of heatsink temperature function of heatsink temperature p tot = f(t h ) i c = f(t h ) a t a t t j = 1 5 0 oc t j = 15 0 oc v ge = 15 v figure 15 br a ke fwd figure 16 brake fwd power dissipation as a forw ard current as a function of heatsink temperature function of heatsink temperature p tot = f(t h ) i f = f(t h ) at a t t j = 1 5 0 oc t j = 15 0 oc brake 0 25 50 75 100 125 150 175 0 30 60 90 120 150 t h ( o c) p tot (w) 0 10 20 30 40 50 60 0 30 60 90 120 150 t h ( o c) i c (a) 0 20 40 60 80 0 30 60 90 120 150 th ( o c) p tot (w) 0 5 10 15 20 25 30 0 30 60 90 120 150 th ( o c) i f (a) copyright vincotech 7 revision: 3
v23990-p719-*-pm figure 1 brake inverse diode figure 2 brake inverse diode typical diode forward current as diode transient thermal impedance a function of forward voltage as a function of pulse width i f = f(v f ) z thjh = f(t p ) at a t t p = 2 5 0 s d = tp / t r thjh = 3, 30 k/w figure 3 bra ke inverse diode figure 4 brake inverse diode power dissipation as a for w ard current as a function of heatsink temperature function of heatsink temperature p tot = f(t h ) i f = f(t h ) at a t t j = 1 5 0 oc t j = 15 0 oc brake inverse diode 0 5 10 15 20 0 1 2 3 4 v f (v) i f (a) t j = 25c t j = t jmax -25c t p (s) z thjc (k/w) 10 1 10 0 10 -1 10 -2 10 -4 10 -3 10 -2 10 -1 10 0 10 1 10 10 -5 d = 0,5 0,2 0,1 0,05 0,02 0,01 0,005 0.000 0 10 20 30 40 50 0 30 60 90 120 150 th ( o c) p tot (w) 0 2 4 6 8 0 30 60 90 120 150 th ( o c) i f (a) copyright vincotech 8 revision: 3
v23990-p719-*-pm figure 1 input rectifier diode figure 2 input rectifier diode typical diode forward current as diode transient thermal impedance a function of forward voltage as a function of pulse width i f = f(v f ) z thjh = f(t p ) at a t t p = 2 5 0 s d = t p / t r thjh = 0, 967 k/w figure 3 in p ut rectifier diode figure 4 input rectifier diode power dissipation as a forw ard current as a function of heatsink temperature function of heatsink temperature p tot = f(t h ) i f = f(t h ) at a t t j = 1 5 0 oc t j = 15 0 oc input rectifier diode 0 20 40 60 80 100 0 0,5 1 1,5 2 v f (v) i f (a) t j = 25c t j = t jmax -25c t p (s) z thjc (k/w) 10 1 10 0 10 -1 10 -2 10 -4 10 -3 10 -2 10 -1 10 0 10 1 10 10 -5 d = 0,5 0,2 0,1 0,05 0,02 0,01 0,005 0.000 0 40 80 120 160 0 30 60 90 120 150 t h ( o c) p tot (w) 0 20 40 60 80 100 120 0 30 60 90 120 150 t h ( o c) i f (a) copyright vincotech 9 revision: 3
v23990-p719-*-pm t j 125 c r gon 4  r goff 4  figur e 1 br a ke igbt figure 2 brake igbt turn-off switching waveforms & definition of tdoff, te off turn-on switching waveforms & definition of tdon, teon (t eoff = integrating time for e off ) (t eon = integrating time for e on ) v ge (0%) = - 1 5 v v ge (0%) = -1 5 v v ge (100%) = 15 v v ge (100%) = 15 v v c (100%) = 60 0 v v c (100%) = 60 0 v i c (100%) = 10 0 a i c (100%) = 10 0 a t doff = 0 , 29  s t don = 0, 11  s t eoff = 0, 67  s t eon = 0, 39  s figure 3 bra ke igbt figure 4 brake igbt turn-off switching waveforms & definition of t f turn-on switching waveforms & definition of t r v c (100%) = 60 0 v v c (100%) = 60 0 v i c (100%) = 10 0 a i c (100%) = 10 0 a t f = 0 , 11  s t r = 0, 03  s switching definitions brake igbt general conditions = = = i c 1% u ce 90% u ge 90% -20 0 2 0 4 0 60 80 100 120 -0,1 0 0,1 0,2 0,3 0,4 0,5 0,6 0,7 0,8 time (us) % t doff t eoff u ce i c u ge ic 10% u ge10% t don u ce3% -20 0 20 4 0 60 80 100 120 140 160 180 200 4,8 4,9 5 5,1 5,2 5,3 5,4 5,5 5,6 5,7 time(us) % i c u ce t eon u ge fitted i c10% i c 90% i c 60% i c 40% -20 0 2 0 4 0 60 80 100 120 140 0,1 0,15 0,2 0,25 0,3 0,35 0,4 0,45 0,5 0,55 0,6 0,65 time (us) % u ce i c t f i c10% i c90% -20 0 20 4 0 60 80 100 120 140 160 180 4,9 5 5,1 5,2 5,3 5,4 5,5 5,6 5,7 time(us) % t r u ce i c copyright vincotech 1 0 r evision: 3
v23990-p719-*-pm figure 5 braker igbt figure 6 brake igbt turn-off switching waveforms & definition of t eoff turn-on switching waveforms & definition of t eon p off (100%) = 59 ,91 kw p on (100%) = 59 ,91 kw e off (100%) = 8, 87 mj e on (100%) = 12 ,48 mj t eoff = 0, 67 s t eon = 0, 39 s figure 7 br a ke fwd turn-off switching waveforms & definition of t rr v d (100%) = 60 0 v i d (100%) = 10 0 a i rrm (100%) = 10 a t rr = 0, 11 s switching definitions brake igbt i c 1% uge90% -20 0 20 40 60 80 100 120 -0,1 0 0,1 0,2 0,3 0,4 0,5 0,6 0,7 0,8 0,9 time (us) % p off e off t eoff u ce3% u ge10% -20 2 0 6 0 100 140 180 4,9 5 5,1 5,2 5,3 5,4 5,5 5,6 time(us) % p on e on t eon i rrm 10% i rrm 90% i rrm 100% t rr -120 - 8 0 -40 0 40 80 120 4,7 4,9 5,1 5,3 5,5 5,7 5,9 6,1 6,3 time(us) % i d u d fitted copyright vincotech 1 1 r evision: 3
v23990-p719-*-pm figure 8 brake fwd figure 9 brake fwd turn-on switching waveforms & definition of t qrr turn-on switching waveforms & definition of t erec (t qrr = integrating time for q rr ) (t erec = integrating time for e rec ) i d (100%) = 1 0 0 a p rec (100%) = 59 ,91 kw q rr (100%) = 20 ,73 c e rec (100%) = 7, 85 mj t qrr = 1, 03 s t erec = 1, 03 s switching definitions brake igbt t qrr -100 - 5 0 0 50 100 150 4,8 5 5,2 5,4 5,6 5,8 6 6,2 6,4 time(us) % i d q rr -20 0 20 40 60 80 100 120 4,8 5 5,2 5,4 5,6 5,8 6 6,2 6,4 time(us) % p rec e rec t erec copyright vincotech 1 2 r evision: 3
v23990-p588-*4*-pm preliminary datasheet in datamatrix as in packaging barcode as without thermal paste 12mm housing p719-g p719-g without thermal paste 12mm housing p719-h p719-h pin table pin x y 1 53 0 2 50,1 0 3 47,2 0 4 40,2 0 5 37,3 0 6 34,4 0 7 27,4 0 8 24,5 0 9 21,6 0 10 18,7 0 11 15,8 0 12 12,9 0 13 7,1 0 14 0 0 15 0 7 16 3 7 17 7 7 18 9,9 7 19 12,8 7 20 44 7 21 47 7 22 50 7 V23990-P719-G-PM v23990-p588-h-pm pinout o r dering code & marking ordering code and marking - outline - pinout version outline ordering code copyright vincotech 13 revision: 3
v23990-p719-*-pm disclaimer l i fe support policy as used herein: the information given in this datasheet describes the type of component and does not represent assured characteristics. for tested values please contact vincotech.vincotech reserves the right to make changes without further notice to any products herein to improve reliability, function or design. vincotech does not assume any liability arising out of the application or use of any product or circuit described herein; neither does it convey any license under its patent rights, nor the rights of others. vincotech products are not authorised for use as critical components in life support devices or systems without the express written approval of vincotech. 1. life support devices or systems are devices or systems which, (a) are intended for surgical implant into the body, or (b) support or sustain life, or (c) whose failure to perform when properly used in accordance with instructions for use provided in labelling can be reasonably expected to result in significant injury to the user. 2. a critical component is any component of a life support device or system whose failure to perform can be reasonably expected to cause the failure of the life support device or system, or to affect its safety or effectiveness. copyright vincotech 14 revision: 3


▲Up To Search▲   

 
Price & Availability of V23990-P719-G-PM

All Rights Reserved © IC-ON-LINE 2003 - 2022  

[Add Bookmark] [Contact Us] [Link exchange] [Privacy policy]
Mirror Sites :  [www.datasheet.hk]   [www.maxim4u.com]  [www.ic-on-line.cn] [www.ic-on-line.com] [www.ic-on-line.net] [www.alldatasheet.com.cn] [www.gdcy.com]  [www.gdcy.net]


 . . . . .
  We use cookies to deliver the best possible web experience and assist with our advertising efforts. By continuing to use this site, you consent to the use of cookies. For more information on cookies, please take a look at our Privacy Policy. X